In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

نویسندگان

  • M Diermaier
  • C B Jepsen
  • B Kolbinger
  • C Malbrunot
  • O Massiczek
  • C Sauerzopf
  • M C Simon
  • J Zmeskal
  • E Widmann
چکیده

Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ASACUSA antihydrogen and hydrogen program: results and prospects

The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In...

متن کامل

A source of antihydrogen for in-flight hyperfine spectroscopy

Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart-hydrogen--is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference wou...

متن کامل

Hyperfine Structure Measurements of Antiprotonic Helium and Antihydrogen

This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of α-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may – through comparison with these theories ...

متن کامل

DESIGN OF A 1.42 GHz SPIN-FLIP CAVITY FOR ANTIHYDROGEN ATOMS

The ground state hyperfine transition frequency of hydrogen is known to a very high precision and therefore the measurement of this transition frequency in antihydrogen is offering one of the most accurate tests of CPT symmetry. The ASACUSA collaboration at CERN will run an experiment designed to produce ground state antihydrogen atoms in a cusp trap. These antihydrogen atoms will pass with a l...

متن کامل

Cpt and Lorentz Symmetry in Hydrogen and Antihydrogen A

Possibilities for observing signals of CPT and Lorentz violation in the spectroscopy of hydrogen and antihydrogen are considered. We show that transitions between the c and d hyperfine sublevels in the 1S state can exhibit theoretically detectable effects that would be unsuppressed by powers of the fine-structure constant. This transition may therefore offer some advantages over 1S-2S two-photo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017